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SUMMARY

Various discretization methods exist for the numerical simulation of multiphase flow in porous media. In
this paper, two methods are introduced and analyzed—a full-upwind Galerkin method which belongs to
the classical finite element methods, and a mixed-hybrid finite element method based on an implicit
pressure–explicit saturation (IMPES) approach. Both methods are derived from the governing equations
of two-phase flow. Their discretization concepts are compared in detail. Their efficiency is discussed using
several examples. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Multiphase flow processes are studied mainly in the context of enhanced oil recovery and
environmental engineering. Although both fields deal with the same processes, reservoir
simulation is generally done on much larger scales than subsurface remediation. Numerical
simulators for multiphase flow in porous media were originally based on finite difference
schemes, and were later based on finite volume and finite element methods. Various Petrov–
Galerkin concepts were developed, e.g. the modified streamline Petrov–Galerkin method [1],
or integrated finite difference methods [2], which accurately handle multiphase flow in
homogeneous media. However, these methods are unable to capture flow phenomena occur-
ring at heterogeneities, i.e. discontinuities in material properties such as absolute permeability,
porosity, or of constitutive relationships. Full-upwind finite element methods, some of which
can be interpreted as control-volume finite element methods [3], were introduced to deal with
these problems. However, these methods generally introduce numerical dispersion.

In recent years a new discretization technique based on mixed finite elements has become
popular in the field of petroleum reservoir simulation [4,5]. The advantage of these methods is
that the primary variables and balance equations are in direct correspondence with the
geometric discretization of the domain into elements and element edges. Hence, it is natural to
formulate material properties with respect to elements and element interfaces. The discretiza-
tion yields a sharp resolution of pressure and velocity fields. The mixed methods can be
combined with a wide range of finite volume concepts based on an implicit pressure–explicit
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saturation (IMPES) approach. ‘IMPES’ refers to a numerical concept in which pressure is
implicitly formulated, and saturation explicitly formulated.

Mixed methods for two-phase flow in porous media have been discussed by Chavent and
Jaffre [4] and Durlofsky [6]. However, they have not been developed in the context of
multiphase flow processes with classical finite element methods. Durlofsky [7] compared mixed
and control volume finite element approximations for the Darcy velocity field of single-phase
flow and found that the mixed finite element method clearly gave, in the case of highly
heterogeneous media, more physically realistic streamlines than the Galerkin- type methods.

The goal of this paper is to compare the two quite different approaches of classical finite
elements and mixed finite elements with regard to their ability to simulate multiphase flow
processes, showing the advantages and the limitations inherent in each approach. Representa-
tive methods of each class, the full-upwind Galerkin [8] and an IMPES-based mixed-hybrid
finite element method [9] are presented, their conceptions and discretizations are compared,
and their performance is demonstrated in several examples.

First, in Section 2, the governing equations are introduced and the numerical schemes of the
two methods are developed. In Section 3, a comparison of the discretization concepts is
undertaken. Then in Section 4, the different aspects are illustrated by numerical examples. The
problems presented are one- and two-dimensional without any capillary effects. Finally, in
Section 5 conclusions are summarized, and current and future developments for the simulation
of multiphase flow processes are mentioned.

2. GOVERNING EQUATIONS AND NUMERICAL DISCRETIZATION

Flow of two (or more) immiscible fluids in porous media is described by Darcy’s law and the
continuity equation for each fluid. The Darcy velocity for phase a is given by

6a= −laK(9pa−7ag), a�{w, n}, (1)

where pa is the phase pressure, kra the relative permeability, ma the viscosity of phase 7a, the
density, K the absolute permeability tensor, and g the gravitational acceleration vector.
Subscripts w and n denote the wetting phase and the non-wetting phase, respectively. Mobility
la=kra/ma of each phase a is defined as the ratio of the relative permeability kra to the fluid
viscosity ma.

The continuity equation for two-phase flow in porous media is given by

((7afSa)
(t

= −9 · [7a6a ]+7aqa, a�{w, n}, (2)

where Sa is the saturation and qa represents the volumetric source–sink rate of phase a.
In addition to Equations (1) and (2), the following relationships must also be satisfied:

pc=pn−pw (3)

Sw+Sn=1. (4)

The relative permeabilities kra(Sa), a�{w, n}, as well as capillary pressure pc(Sw) are unique
functions of the saturation. It should be noted that these constitutive relationships are strongly
non-linear functions.

We have restricted our investigation to incompressible fluid flow, i.e. constant densities 7n

and 7w. Furthermore, we assume a constant porosity over the entire domain. Under these
assumptions, the continuity equation is reduced to
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f
(Sa

(t
= −9 ·6a+qa, a�{w, n}. (5)

2.1. Full-upwind Galerkin method

Darcy’s law (1) for fluid flow in porous media and the continuity equation (5) form the basis
for the description of (incompressible) multiphase flow processes. Pressure and saturation of
each phase can be coupled using constraints (3) and (4). Substituting (1), (3) and (4) into (5)
yields the coupled pressure–saturation equations for incompressible two-phase flow with
unknowns pw and Sn:

−f
(Sn

(t
=9 · [lwK(9pw−7wg)]+qw

f
(Sn

(t
=9 · [lnK(9pw+9pc−7ng)]+qn. (6)

These equations form the basis for a number of Galerkin finite element methods. When
compressibility is taken into account in these equations, they are extremely general in their
applicability. They include the effects of capillary pressure and relative permeability, as well as
variations of the absolute permeability and the porosity with position. The differential
equations are discretized using the lowest order, conforming the Galerkin finite element
method. Standard Galerkin methods have the same shape and test space. A generalization of
their approach represents the Petrov–Galerkin methods which use distinct spaces for test and
shape functions. In contrast to many Petrov–Galerkin approaches which do partial upwind-
ing, the full-upwind Galerkin approach uses the test functions from the standard Galerkin
method in conjunction with the upstream mobilities.

The system of Equation (6) can be classified as a mixed hyperbolic–parabolic type. The
system describing one-dimensional two-phase flow with incompressible fluids and no capillary
pressure is reduced to the well-known Buckley–Leverett equation. This equation is a non-lin-
ear hyperbolic equation with respect to the fluid saturation. On the other hand, if the entire
domain is single phase, then the system of equations reduces to a parabolic equation with
respect to the fluid pressure. Therefore, we regard pressure as a ‘parabolic-type’ and saturation
as a ‘hyperbolic-type’ variable [10].

The unknown quantities—pressures and saturations—are approximated by standard finite
elements. Hence they can be expressed by following linear combinations:

p̃w= %
i�I

p̂w,iNi p̃c= %
i�I

p̂c,iNi S0 n= %
i�I

S. n,iNi, (7)

where Ni are the base functions of the corresponding approximation space with the property
Ni=dij at node j, d is the Kronecker delta, and the hat values are the values of approximation
at the corresponding nodes. I is the set of all nodes of the discretization of domain V, and hi

is the set of all neighbouring nodes of node i, i.e. all nodes that have an element with i in
common.

Test space and approximation space are the same for the full-upwind Galerkin method.
However, a form of upwinding is introduced by the evaluation of mobilities at upstream nodes.
In the two-dimensional case, the upwinding for quadrilateral elements is controled by the
gradients 8a (see Equation (11)) evaluated at edge mid-points [8]. In order to improve the
stability of the method, mass lumping is applied to the mass matrix. In addition, for Equation
(5), which is semi-discretized in time, a fully implicit formulation is chosen. This gives the
following functional equations:
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Ga(p̂w
n+1, Sn

n+1):= (−1)
dan fMii

lump

Dt
(S. n,i

n+1−S. n,i
n )+ %

j�hi

la,ij
up,n+18a,ij

n+1gij+
&

V
qa

n+1Ni dV

+ma,i
n+1=0, a�{w, n}, (8)

where Mij
lump is the lumped mass matrix defined by

Mij
lump=dij %

j�I

&
V

NiNj dV=dij
&

V
NidV, (9)

and the upstream mobilities la,ij
up are taken as

la,ij
up =

!la,i : gij8a,ij50
la, j : gij8a,ij\0

, a�{w, n}. (10)

Gradient 8a,ij which comprises phase pressure gradient as well as gravity is given by

8a,ij
n+1= (p̂w,j

n+1− p̂w,i
n+1)+dan(p̂ c,j

n+1− p̂ c,i
n+1)−7ag(D. j−D. i), (11)

where D. i is the depth at node i with respect to a reference point, and g, the gravitational
constant. The transmissivity integral gij is expressed by

gij= −
&

V
9NiK9Nj dV. (12)

gij is negative in the one-dimensional case and for square elements in two dimensions. The
Neumann boundary term ma,i for phase a at boundary node i is given by

ma,i=
&

GaN

NilwK(9pw+dan9pc−7ag) ·n� G dG, (13)

where n� G is the outward unit normal to boundary G.
A Newton–Raphson iterative scheme is utilized to solve the system of functional Equation

(8) for vector (p̂w
n+1, S. n

n+1), which has the node values of p̃w and S0 n as components. The
corresponding linear system of equations is the product of the Jacobian of (Gw, Gn) times the
correction vector (Dp̂w, DS. n) on the left-hand side and (Gw, Gn) on the right-hand side [1,11].
The Jacobian and the right-hand side vector are evaluated with the result of the last iteration.
The iteration process is continued until the correction vector satisfies a specified condition.

2.2. Mixed finite element– finite 6olume approach

2.2.1. Differential equations. Pressure and saturation are decoupled in the mixed finite
element–finite volume (FE–FV) approach. Two differential equations, a pressure and a
saturation equation, which have pressure and saturation as primary variables, respectively, can
be derived from the basis Equations (1), (3)–(5).

To derive the pressure equation, one must eliminate the time derivatives of the saturations
in the continuity equation (5) using constraint (4). This is achieved by adding the two
continuity equations. This gives us the following equation:

−9 · [6n+6w]+qt=0, (14)

where qt=qn+qw is the total volumetric flow rate into the domain.
By introducing an average pressure pavg= (pn+pw)/2 of the two-phase system, the phase

pressures pn and pw can be expressed in terms of average pressure pavg and capillary pressure
pc (see Equation (3)) in the following way:
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pn=pavg=
1
2

pc, pw=pavg−
1
2

pc. (15)

Substitution of Equations (1) and (15) into (14) yields the pressure equation:

9 · [ltK9pavg]+
1
2

9 · [(ln−lw)K9pc]−9 · [(7nln+7wlw)Kg ]+qt=0, (16)

where lt=ln+lw is the total mobility of the system.
In the case of reservoir simulation problems, capillary pressure is generally small compared

with the average pressure. Therefore, capillary pressure terms were neglected in the following
investigations. The gravitational terms are also neglected in the following, resulting in a
simplified form of the pressure equation which is given by

9 · [ltK9pavg]+qt=0. (17)

The resulting differential equation represents an elliptic equation [12]. If we also assume that
there are no sources and sinks inside of the domain, the pressure equation can be expressed by
the following system of equations:

6t=ltK9pavg (18)

9 ·6t=0, (19)

where 6t=6n+6w is the total velocity of the two-phase system. These two equations form the
basis equations of the mixed finite element formulation (in Section 2.2.3).

In order to derive the saturation equation, the differential equation must be formulated in
terms of a specific phase saturation. Here, the saturation equation is written in terms of the
wetting phase saturation. From Equations (1) and (3), the following equality can be derived:

lnlwK9pc=ln6w−lw6n+lnlw(7n−7w)Kg. (20)

Equation (20) can be modified in order to get

lt6w=lw6t+lnlwK(9pc(7w−7n)g). (21)

With the fractional flow function fw=lw/lt and the dimensionless expression

Gd=
(7w−7n)Kg

mn6t
, (22)

which represents the ratio of gravitational to convective effects, Equation (21) can be expressed
in a more compact form:

6w=6tfw(1−krnGd)−lnfwK9pc. (23)

Substitution of Equation (23) into (5) for the wetting phase yields the saturation equation:

f
(Sw

(t
= −9 · [6tfw(1−krnGd)]−9 · [lnfwK9pc]+qw. (24)

When we assume that there are no sources or sinks inside the domain, i.e. qw=qt=0, and
omit the gravitational term, the following equation is obtained:

f
(Sw

(t
= −9 · [6tfw]−9 · [lnfwK9pc]. (25)

The first divergence term can be expanded by
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9 · [6tfw]= fw 9 ·6t
¿ËÀ

=0

+6t9fw=6t
dfw

dSw

9Sw. (26)

9 ·6t is zero since we have assumed a source- and sink-free domain. Defining function hw by

hw= −lnfwK
dpc

dSw

, (27)

yields a very simple form of the saturation equation:

f
(Sw

(t
= −6t

dfw

dSw

9Sw+9 · [hw9Sw]. (28)

It should be noted that when the second term on the right-hand side is dominant, i.e. capillary
pressure effects play a major role and hw becomes large, the saturation equation becomes
strongly parabolic. However, when capillary pressure effects are negligible or absent, the
saturation equation reduces to a first-order non-linear hyperbolic differential equation.

2.2.2. Structure of the implicit-pressure–explicit saturation concept. In contrast to simulta-
neous approximation of pressure and saturation by the iterative scheme of the full-upwind
Galerkin method, the IMPES concept involves the sequential solution of the pressure equation
and the saturation equation (see Figure 1). The presented IMPES concept is based on these
two equations. The two differential equations depend only on the pressures and the saturations
of the two-phase system. While the pressure equation is partially or fully implicitly formulated,
the explicit form of the saturation equation is used. In general, the fully implicit form of the
pressure equation is used. The pressure equation is discretized by a mixed finite element
formulation which is hybridized to obtain a linear system of equations with favourable
properties. The edge mobilities to be used by the mixed-hybrid method are derived from the

Figure 1. Structure of the presented IMPES method.
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corresponding upstream saturations of the preceeding time step. The pressure field and the
fluxes over the element edges of the partition are obtained and used in the saturation equation
which is formulated explicitly by an integrated finite difference approach. Then, the element
saturations are determined using a slope limiter technique based on the EO (Engquist–Osher)
numerical flux scheme [13]. It is important to note that the decoupling of the solution for
pressure and saturation is only justified when the interaction between these two quantities is
relatively small.

2.2.3. Mixed-hybrid finite element method. A mixed-hybrid method is applied to the pressure
equation. The pressure equation can be split into two equations, (18) and (19). The notion of
mixed finite element methods entails the weighting of a system of functional equations by
distinct test spaces. The corresponding integral equations for (18) are weighted by test
functions from H(div; V), and the ones corresponding to (19) are weighted by L2(V)-functions.

H(div; V) is defined by

H(div; V)={u� (L2(V))2�9 ·u�L2(V)}. (29)

Because these spaces are of infinite dimension, we approximate them by finite dimensional
function spaces X00 (V) and Y(V). These spaces are closely related to the discretization of the
domain, i.e. the partitioning Th of the domain into elements K�Th and edges ei�oh, where oh

denotes the set of all element edges.
X00 (V) and Y(V) are defined by

X00 (V)={u�H(div; V)�u�K�RT0(K)

ÖK�Th}={u�X0 (V)�u ·n� (K+u ·n� (K%=0 along ei=(KS(K % Öeioh} (30)

Y(V)=9 ·X00 (V)={q�L2(V)�q�K�YK ÖK�Th}, (31)

where

X0 (V)={6� (L2(V))2�6�K�RT0(K) ÖK�Th}, (32)

and YK=9RT0(K)={yK �yK=const. in K}. RT0(K) is the lowest order Raviart–Thomas
space for element K [14,15].

We assume that the permeability tensor K is invertible. Then Equation (18) can be multiplied
by K−1 and divided by lt. The resulting equation is

1
lt

K−16t=9pavg. (33)

The weak formulation of (18) and (19) with test functions from the function spaces X00 (V) and
Y(V), respectively, represents their mixed finite element formulation. The velocity field 6t is
discretized by function 6̃h�X00 (V) and the pressure field pavg by p̃h�Y(V). Then the variational
equations are given by the following:

Find (6̃h, p̃h)�X00 (V)×Y(V) such that&
V

1
lt

K−16̃h ·u dV−
&

V
p̃h9 ·u dV=

&
GD

p̃Dhu ·n� G dG Öu�{u�X00 (V)�u ·n� GN=0}

&
V

9 · 6̃hq dV=0 Öq�Y(V)
&

ei

6̃h ·n� G dG=Q0 N,e
i

Öei¦GN. (34)

Q0 N,ei
is the volumetric flow rate over element edge ei of the Neumann boundary and p̃Dh is the

discretized representation of the pressure along the Dirichlet boundary.
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The mixed-hybrid finite element method is based on dualization principles. For this reason,
an additional function space Z(V) for the Lagrange multipliers TPei

is needed. It is defined by

Z(V)={z �zei
=constant Öei�o h}. (35)

Moreover, X0 (V)—a more general space than X00 (V)—is necessary. X0 (V) has already been
defined by Equation (32).

The variational equations of the mixed-hybrid finite element method have the form:
Find (6h, ph, tph

)�X0 (V)×Y(V)×Z(V) such that&
V

1
lt

K−16h ·u dV−
&

V
ph9 ·u dV+ %

ei�oh

%
K�Th,(K³ei

&
ei

tph
u ·n� (K dei=0 Öu�X0 (V) (36)

&
V

9 ·6hq dV=0 Öq�Y(V) (37)

%
ei�oh

%
K�Th,(K³ei

&
ei

6 h ·n� (Kz dei=
&

GN

qNh · ñGz dG Öz�{z�Z(V)�z�GD
=0} (38)

tph
= tpDh along GD. (39)

The natural choice for basis functions of the finite dimensional function spaces X0 (V) and Y(V)
is

uK,i�X0 (V)Í
Ã

Ã

Á

Ä

uK,i �K %
=0)&

ei

9 ·uK,i dej=dij

ÖK %�Th, K %"K

Öe j�oh, ej¦(K
(40)

xK�Y(V) xK�K%=dKK% ÖK, K %�Th. (41)

This yields the following representation of the approximated velocity and pressure field:

6h�K= %
nK

j=1

QK,ej
uKj

(42)

ph�K=PK (43)

ph�ei
=TPe

i
(44)

nK denotes the number of edges of element K. Equation (42) states that the velocity field 6h
inside of each element K is completely determined by the element edge fluxes QK,ej

. The
discretized pressure field is given by element values PK and element edge values TPei. Figure
2 illustrates the discretized pressure field, velocity field, and saturation distribution.

The discretized form of variational Equations (36)–(39) is then

%
nK

j=1

QK,ej

&
K

1
lt

K−1uK, j ·uK,i dK

=PK

&
K

9 ·uK,i dK

¿����Ë����À
=1

− %
nK

j=1

TPej

&
ej

uK,i ·n� (K dej

¿����Ë����À
=dij

i=1, . . . , nK ÖK�Th (45)
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Figure 2. Discretization of the mixed-hybrid finite element method: (a) pressure field (element pressures P, edges TP);
(b) velocity field (edge fluxes Q); (c) saturation distribution (element saturations S).

%
nK

j=1

QK,ej

&
K

9 ·uK,i dK

¿����Ë����À
=1

=0 ÖK�Th (46)

QK,ej
+QK%,ej

=0 Öej=(KS(K % (47)

QK,ei
=QN,ei

Öei¦GN (48)

TPei
=TPD,ei

Öei¦GD. (49)

The dualization principle is applied to the incompressibility condition (46) and the continu-
ity of fluxes across element edges (47). This means the QK,ej

expressions in (45) are isolated and
substituted into (46), giving the discretized element balance equations. The PK terms are
extracted in the element balance equations and substituted into the equations which emerge
from the substitution of the QK,ej

’s of (46) into (47) and (48). By these substitutions, element
pressures PK and edge fluxes QK,ej

are eliminated. The resulting mixed-hybrid system of
equations has only the Lagrange multipliers TPei

, which represent the edge pressures, as
primary variables. It can be shown that the corresponding system matrix is positive definite
and consequently the system can easily be solved, for instance, with a conjugate gradient
method [4,9]. Afterwards, the gained TPei

n+1 values can be used to obtain the element pressure
values PK. Finally, all pressure values are needed to solve Equation (45) for the element edge
fluxes QK,ej

.

2.2.4. Finite 6olume method. After application of the mixed-hybrid FE method, the pressure
field at the new time level is known. Moreover, the total flux across each element edge of the
partition during the current time step is also known. Now the phase saturations at the new
time level can be computed. A finite volume method is applied to the saturation equation. The
method corresponds to the finite element concept with test functions xK, which are piecewise
constant. The weak formulation of the differential equation is represented by the integrals over
each element. Therefore, this method is also called an integrated finite difference scheme.
Consequently, the weak formulation of the saturation equation reads&

V
f
(Sw

(t
xK dV= −

&
V

9 · [6tfw(1−krnGd)]xK dV−
&

V
9 · [lnfwK9pc]xK dV+

&
V

qwxK dV,

(50)

where the test functions xK are characteristic functions with respect to partition Th of the
domain, i.e.
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xK=
!1

0
in element K
else

. (51)

The discretized equation for each element K with element saturation SK, fluxes QK,ei
and a

backward Euler time discretization applied to the time derivative is

f �K � SK
n+1−SK

n

Dt
= − %

ei;edges of K

fw(1−krnGd)QK,ei
− %

ei:edges of K

&
ei

lnfwK9pc ·n� ei
dei+qw�K �,

(52)

where �K � is the volume of element K.
The saturation SK

n+1 in element K at the new time level n+1 is determined by

SK
n+1=SK

n +Dt(Fkonv/grav
n+1 +Fdiff

n+1), (53)

where the convective–gravitative and diffusive components of the flux are treated separately.
They are given by

Fkonv/grav
n+1 = −

1
f �K � %

nK

i=1

fwQei

n+1(1−Gd) (54)

Fdiff
n+1=

1
f �K � %

nK

i=1

&
ei

lnfwK9pc ·n� ei
dei. (55)

Chavent and Jaffre [4] give two ways to determine the capillary pressure dependent fluxes.
They solve a linear system of equations which can be formulated, either with respect to edges
and element mid-points, or only for edges. If convection is dominant, it is not necessary to
calculate the diffusive fluxes with higher accuracy than the convective ones. Thus, it is
sufficient to choose the second variant. Furthermore, this variant saves much computation
time, especially in two or more dimensions. To approximate the fluxes, Durlofsky [6] proposed
another approach based on an essentially non-oscillatory (ENO) Runge–Kutta scheme [16].

The Buckley–Leverett problem [17] shows that discontinuities in the saturation distribution,
e.g. shocks, can occur. Therefore the method applied to such problems should meet several
requirements. It should give high resolutions of saturation fronts without producing spurious
oscillations. This means that the numerical solution should show convergence to the physically
correct entropy satisfying solution. Furthermore, the method should preserve mass locally and
should be accurate up to second order in smooth regions of the solution.

The minmod slope limiter technique represents a method which has the required properties.
Slope limiter methods for one-dimensional problems reduce slopes in the vicinity of discontinu-
ities and belong, therefore, to the total variation diminishing (TVD) methods. The first TVD
methods were introduced by van Leer [18]. There have been several developments made in the
meantime by Engquist and Osher [13], Roe [19] and Sweby [20].

Slope limiting methods consist of three steps: first, in the one-dimensional case, a piecewise
linear saturation distribution S0 n(x, tn) using the given values {SK

n } from time level n is
constructed. The minmod slope limiter belongs to the F-limiters (15F52), whose slopes s
over each (one-dimensional) element are determined by

s=
!1/2 (sign(s1)+sign(s2)) max{�s1�, �s2�}
F1/2 (sign(s1)+sign(s2)) min{�s1�, �s2�}

s1/s25F�s2/s15F
else

. (56)

Equation (56), for the reconstruction of the saturation profile, is illustrated in Figure 3 for
F=1 and F=2. This function is subsequently used to solve the conservation law (53) for the
cell-average values {SK

n+1} of the saturation at time level n+1.
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Minmod (F=1) is the F-limiter with the weakest CFL time step restriction and therefore a
good choice for problems with non-linear fluxes. Some slope limiters, such as the minmod
limiter, can be interpreted as flux limiters and vice versa [21].

The algorithm described so far corresponds to the Godunov flux [22], i.e. the mobilities are
upstream weighted. However, problems are likely to occur at sonic points and stationary
shocks. For this reason, the more sophisticated EO numerical flux developed by Engquist and
Osher [13] is used. This adds diffusion to the system at critical points, in order to ensure
stability and convergence to the entropy solution. Another alternative is the two-phase
upstream weighted flux by Brenier and Jaffre [23]. In some cases, this flux scheme is more
efficient.

In the two-dimensional case, the minmod slope limiter is again utilized for the bilinear
reconstruction of the saturation distribution SK in element K. Consequently, the solution of the
saturation equation follows the same procedure as in the one-dimensional case. However, only
average values of the edge saturations are needed, node values are not required. The resulting
method represents a five-point scheme. In order to avoid grid orientation effects, a nine-point
scheme is necessary. The minmod slope limiter method is in the one-dimensional case, total
variation diminishing. However, in two dimensions, minmod has not this property anymore.

2.2.5. Global algorithm. The presented IMPES-based FE–FV method can be summarized by
subdividing the solution of the mixed-hybrid formulation of the pressure equation into three
procedures. First the mixed-hybrid system of equations is solved for the Lagrange multipliers
TPei

n+1. The element pressures PK
n+1 can then be obtained and the total fluxes Qei

n+1 can be
determined by Equation (45) using edge and element pressures. Then, when the pressure and
velocity field of time level n+1 are known, the discretized saturation equation (52) is solved
using the minmod limiter technique based on the EO numerical flux scheme.

3. COMPARISON OF THE TWO METHODS

The presented methods correspond to two completely different approaches for the solution of
transient multiphase flow processes in heterogeneous porous media. The Galerkin-type finite

Figure 3. Piecewise linear reconstruction of the saturation by minmod (F=1) and maxmod (F=2) limiter.
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element methods, such as the standard Galerkin, Petrov–Galerkin, and full-upwind Galerkin
methods represent the classical approach to these problems [1,24]. For each phase, one
differential equation is necessary. The primary variables, the pressure of one phase and the
saturation of the other phase, are discretized by classical finite elements and consequently have
continuous approximations. Physically, the saturation distribution is generally discontinuous.
For instance, infiltration processes produce propagating shock fronts. Another example
represent stationary jumps of the saturation which develop in the vicinity of sharp discontinu-
ities of material properties.

In contrast to the node values of the Galerkin finite element approach, the numerical
approximation of the pressure field by the mixed finite elements is represented by ‘average
values’ over each element and edge of the discretized domain. The velocity field is described by
the total fluxes over the element edges. These total fluxes guarantee that the method obeys a
local mass conservation principle for each element. The pressure field is determined not only
inside elements but, in the case of the mixed-hybrid method, on element edges. The Galerkin
methods have node values for the pressure only. The classical FE solutions satisfy a global
mass conservation principle only. Some classical finite element methods belong to the class of
control-volume finite element methods and consequently conserve mass locally.

Although the same partition of the considered domain is used, boundary conditions,
material properties such as absolute permeability, constitutive relationships, porosity, etc., are
discretized in a different way. In contrast to the mixed finite element approach, the classical
finite element discretization allows only continuous transitions of such quantities and proper-
ties. The mixed approach is characterized by discontinuous spatial representations of these
material and fluid properties. Relative permeabilities are formulated on edges as well as inside
of elements. For heterogeneous media, the absolute permeability tensor K should be harmon-
ically weighted. This is done by the mixed-hybrid method in a natural way because it
discretizes K−1 in Equation (45) [7]. In contrast to this, tensor K in the transmissivity integral
(12) of the classical finite element methods must be substituted by its harmonical average of
the corresponding node values. Both methods can easily be extended to compressible fluid
flow. One advantage of the mixed finite element conception is that fluxes across element edges
are unambiguous, even if an element edge constitutes an interface between regions of different
material compositions and properties. This is not the case for classical finite elements. The
velocities and fluxes are derived from the pressure gradients. However, at discontinuities in
material and fluid properties, pressure gradients of different magnitude and orientation appear
on each side of an element edge. This leads to ambiguous fluxes across element edges because
the velocity field is determined by differentiation of the phase pressures.

The primary variables of the full-upwind Galerkin method are the pressure of one phase and
the saturation of the other phase. They are solved simultaneously by an iterative scheme. This
means that pressure and saturation have the same order of accuracy. The primary variables of
the mixed finite element method are pressure and element edge fluxes. They are approximated
simultaneously. One advantage of the mixed finite elements is that pressure and velocity fields
have the same order of accuracy. In contrast, classical finite elements have velocities of an
order less than the pressure approximation. This is because differentiation entails the loss of
one order of accuracy. However, the advantage of a better approximation of fluxes and the
ability to discretize saturations and material properties discontinuously is paid for by a
decoupling of pressure and saturation inherent in the IMPES concept.

In addition to the ability to describe geometrically complex geological structures, the need
to consider capillary pressure effects in highly heterogeneous soils becomes more and more
important. Furthermore, the development and simulation of thermally enhanced remediation
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Figure 4. One-dimensional Buckley–Leverett problem.

techniques for contaminated soils requires the extension of three and more fluids to systems,
and the inclusion of compressibility and non-isothermal effects on flow processes into the
model. The aforementioned limitations underlying the IMPES method represent a problem
when extending the method to systems of rapidly changing pressures and large capillary
pressure effects.

Positive aspects of mixed methods are the short computation times for two-phase flow
without capillary pressure effects, the high resolution of material heterogeneities and saturation
fronts, and the better description of the posed initial boundary-value problems. However, one
drawback of the method is the time step restrictions inherent in the explicit solution of the
fluxes imposed by the CFL condition.

4. NUMERICAL EXAMPLES

The following numerical examples are non-dimensionalized so that physical units are avoided.
In addition, the term ‘PVI’ for pore volumes injected is introduced.

4.1. One-dimensional problem in a homogeneous medium

First we will show the performance of the full-upwind Galerkin and the mixed-hybrid
method with respect to flow in a homogeneous medium. The Buckley–Leverett problem [17]
is a simple test problem without capillary pressure effects, where the quasi-analytical solution
is easily derived [9,21]. It is excellent to investigate the two methods with respect to their
convergence to the exact solution and their resolution of discontinuities. The Buckley–Leverett
problem describes the displacement, in our case, of a wetting phase by a non-wetting phase
from left to right where a constant total flux through the domain takes place (see Figure 4).

Initially, the total pore volume is filled with the wetting phase. A time independent boundary
non-wetting phase saturation of one is assumed at the left end of the considered domain. The
ratio of the fluid viscosities is one, and residual saturations are zero. For the relative
permeability functions, the Brooks–Corey model is used with pore size distribution index
l=2.0. The relative permeabilities then have the following form:

krw(Sw)=Sw
4 (57)

krn(Sw)= (1−Sw)2(1−Sw
2 ). (58)

The one-dimensional domain is discretized by equidistant grids into 10, 20 and 40 elements
with a time discretization of 20, 40 and 80 time steps, respectively.

Figure 5 shows the saturation profiles of the numerical methods and the quasi-analytical
solution at 0.4 PVI, i.e. when 40% of the total pore volume is filled with the injected fluid.
Both methods converge to the (quasi-) analytical solution. The full-upwind Galerkin finite
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element method approaches the analytical solution in the smooth region, behind the shock
front, from below. The mixed method approaches the analytical solution in smooth regions
from above. In contrast to the Galerkin-type method which has too much numerical disper-
sion, the mixed finite element method shows a sharp resolution of the shock front, even for
large discretization lengths.

Figure 5. One-dimensional displacement of a wetting phase in a homogeneous porous medium at 0.4 PVI: (a)
full-upwind Galerkin; (b) mixed-hybrid method.
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Figure 6. Five-spot waterflood problem: (a) diagonal grid; (b) parallel grid.

4.2. Fi6e-spot waterflood problem

The five-spot waterflood problem described by Spivak et al. [25] comprises two cases.
Analogously to the Buckley–Leverett problem, it deals with incompressible flow without
capillary pressure effects—the displacement of oil by water within a square-shaped domain.
Initially, there is no water present in the system. The square domain is discretized by regular
grids of dimension 16×16, 32×32 and 64×64. The five-spot waterflood problem is a test
case to investigate grid orientation effects of numerical schemes. In the first case, the ‘diagonal
grid’ case, water is injected at the lower left corner and displaces the oil which flows out of the
domain at the upper right corner (see Figure 6 (a)). The principal flow direction is diagonal to
the grid.

The second case is similar to the first one but the water is now injected at the lower left
corner and the upper right corner. The oil can leave the domain at the lower right corner and
the upper left corner (see Figure 6 (b)). The main flow paths are parallel to the grid. For this
reason, it is also called the ‘parallel grid’ case.

For both cases an ‘ideal’ numerical scheme should produce a quarter circle shaped
saturation front of the injected water phase. Analogously to Spivak et al., the relative
permeability–saturation relationship after Todd is assumed.

It is given by

krw(Sw)=Sw
2 , krn(Sw)= (1−Sw)2, (59)

and we assume a mobility ratio of mn/mw=4. The fractional flow function is then

fw(Sw)=
4Sw

2

4Sw
2 + (1−Sw)2. (60)

The initial condition is a uniform saturation of Sw=0 inside the domain. The results show the
situation at 0.075 PVI for the diagonal grid case, and at 0.15 PVI in the case of the parallel
grid. For the 16×16, 32×32 and 64×64 grids, the number of time steps used are 150, 300
and 600, respectively.

To get a better idea of how the numerical solutions converge to the exact solution, the
cross-section of the water saturation profile along the diagonal line (x, y), x=y, for the
diagonal grid case is shown in Figure 9. The ‘exact’ solution is computed from a fine-scale
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finite difference solution of the radial Buckley–Leverett flow [26]. The radial Buckley–Leverett
flow describes the situation where water is injected into the centre of a circular region. The
corresponding differential equation is given by

(Sw

(t
+

1
r
(

(r
(rf(Sw, r))=0, (61)

where r is the radial distance from the injection centre.
Because we are studying incompressible fluids, flux f has the form f(Sw, r)= fw(Sw)/r,

therefore, Equation (61) reduces to

(Sw

(t
+

1
r
(fw(Sw)
(r

=0, (62)

and finally we obtain

(Sw

(t
= −

1
r
(fw(Sw)
(Sw

(Sw

(r
. (63)

dfw(Sw)/dSw is known for any value of Sw, and the remaining differential operators are
discretized by backward finite differences.

Figure 7 shows that the full-upwind Galerkin method has no significant grid orientation
effects (cross-diffusion). In contrast, for coarse grids, the mixed finite element method results
in saturation profiles which are deformed quarter-circles. For both the diagonal and parallel
grid cases, as depicted in Figure 8, the saturation fronts propagate faster along the boundaries
of the square domain than in direction of the diagonal. With further grid refinement, these grid
orientation effects suddenly vanish and the numerical solutions of the mixed method converge
rapidly to the exact solution. This phenomenon is apparent when looking at the cross-sections
of the saturation profiles of the diagonal grid case along the diagonal. While the curves of the
full-upwind Galerkin method converge gradually, with much numerical dispersion and smear-
ing, to the exact solution, the mixed finite element solutions show a rapid convergence from
the 32×32 grid to the 64×64 grid. The grid orientation effects vanish rapidly when a certain
level of refinement is reached.

4.3. Two-dimensional problem in a heterogeneous medium

The presented two-dimensional problem is analogous to the diagonal grid case of the
five-spot waterflood problem. The domain corresponding to a reservoir or a part of the
subsurface is a square with impermeable boundaries, except for an inflow and an outflow
boundary at the lower left and upper right corner, respectively.

The non-wetting phase is injected into the domain at a constant flow rate. The same relative
permeability–saturation relationships are used as in the former section. In contrast to the
problem in this previous section, the absolute permeability is not constant over the considered
domain. In the heterogeneous medium, a distribution of the absolute permeability of the form
K=kId is assumed where k is log-normally distributed and Id is the identity matrix. The
distribution (see Figure 9 and Figure 10(a)) is characterized by following parameters: log10k
has a mean of −5.0, a variance of 0.2, and a correlation length of 0.2. The discretization of
the problem is carried out using a 32×32 regular grid and 600 time steps. The numerical
results in Figure 10 (b)–(c) display the saturation distribution of the injected non-wetting
phase at 0.3 PVI for the two methods. At the lower left corner, the injected non-wetting phase
displaces the wetting-phase within the square domain. In high-permeable zones of the domain
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Figure 7. Numerical results of the full-upwind Galerkin method for the diagonal grid at 0.075 PVI (left), and for the
parallel grid at 0.15 PVI (right): (a) 16×16; (b) 32×32; (c) 64×64 elements.
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Figure 8. Numerical results of the mixed-hybrid method for the diagonal grid at 0.075 PVI (left), and for the parallel
grid at 0.15 PVI (right): (a) 16×16; (b) 32×32; (c) 64×64 elements.
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preferential flow paths develop, along which the displacing phase propagates faster. The
numerical solution of the full-upwind Galerkin method shows a very smooth transition of the
saturation. In contrast, the mixed method reveals a very sharp shock front. Because the same
amount of non-wetting phase is injected, the saturation front of the full-upwind Galerkin
method has propagated much further.

To give an idea of the computational savings the mixed-hybrid method provides for the
calculation of the given problem compared with the full-upwind Galerkin method the sizes of
the corresponding systems to be solved, and the computational effort are considered. The
system matrix of the finite element method for a n×n element grid is of dimension 2(n+1)2,

Figure 9. Five-spot waterflood problem (diagonal grid case): Cross-section of the water saturation profile along the
diagonal line (x, y), x=y. (a) Full-upwind Galerkin; (b) mixed-hybrid method.
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Figure 10. Flow in a heterogeneous medium: (a) permeability field (log10k); numerical results of the full-upwind
Galerkin; and (b) the mixed-hybrid method; (c) at 0.3 PVI.

that is twice the number of nodes. The size of the corresponding mixed-hybrid system matrix
is equal to the number of edges and amounts 2n(n+1). For both methods, the calculations
were carried out on a HP 9000/C110 (HP-UX 10.10) machine. For the 600 time steps, the
full-upwind Galerkin method takes 1216 Newton iterations with a total cpu time of 17725 s.
Therefore, an average of 2.03 Newton steps are necessary per time step, with a computational
effort of 14.58 s per Newton iteration.

For the given problem, the mixed-hybrid method is 13 times faster than the full-upwind
Galerkin method (see Table I). This number gives an idea of the efficiency of the mixed-hybrid
method for the simulation of convection–gravitation-dominated processes.
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Table I. Computational effort

Unit Full-upwind Galerkin method Mixed-hybrid method

—Size of system matrix 2178 2112
s 29.54Computation time per time step 2.26
s 17 725Total computation time 1353

5. CONCLUSION

There are two main conceptions for future developments and extensions of existing codes and
models for multiphase flow in heterogeneous porous media. One follows the control-volume
finite element approach based on the coupled pressure–saturation equations, in conjunction
with a Newton–Raphson iterative scheme. Mass is conserved locally over each control-vol-
ume. The iterative approach is well suited for the simulation of capillary pressure effects, e.g.
the entry condition (bubbling pressure) [24]. It is easy to extend the given method to multi-
(more than two) phase flow [1]. Moreover, this method can be modified for multi-phase
compositional simulators [27], and physical aspects such as thermal influence [28], hysteresis,
chemical reactions, etc. can easily be included into the scheme. Of course, the system can be
formulated for three dimensions. One method which is based on the control-volume finite
element approach is the presented full-upwind Galerkin method.

The decoupling of pressure and saturation of the IMPES philosophy is not suited to
simulate processes where high changes of capillary pressure with respect to saturation occur,
as it happens for diffusion-dominant processes. The employment of implicit flux limiting
schemes is one option with which the problem may be dealt. However, any improvement
regarding the approximation of the diffusive effects involves an additional computational
effort [4]. On the other hand, if the changes of the pressure field with respect to the time are
small and convective processes are dominant, then the IMPES method proves to be a much
more efficient choice, as demonstrated in Section 4.3. For very slowly changing pressure fields,
the pressure equation needs to be solved after several time steps, which saves a great deal of
the computation time.
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